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ABSTRACT

The explicit solutions of the first-order perturbation equations

for a one dimensional system can be obtained by quadratures provided

that the zeroth-order wave function does not have any nodes. Methods

of integrating the equations are developed for excited states where the

zeroth-order wave function has nodes. One of these methods is suitable

for obtaining numerical solutions.
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THE INTEGRATION OF THE FIRST-ORDER PERTURBED WAVE EQUATION

FOR EXCITED STATES OF ONE DIMENSIONAL SYSTEMS

Introduction

Recently there has been a renewed interst in perturbation theory

in quantum mechanics. One aspect of this development, due largely to
1

Dalgarno and his colleagues I has been the successful calculation of

the first-order corrections to the expectation values of one-electron

operators. This has been achieved by obtaining the exact solutions

of the first-order wave equations rather than by attempting to use the

very awkward representation of the first-order wave function in terms

of the spectrum of solutions of the unperturbed hamiltonian.

It was first pointed out by Young and March2 that the first-order

wave equation for a one dimensional system can always be integrated by

quadrature. However these authors only discussed the ground state of

the system in which the wave function has no nodes. In the case of

excited states singularities occur in the equation owing to the nodes

of the unperturbed wave function. The object of this paper is to show

how the singularities may be handled both analytically and in numerical

work.

First-Order Wave Equations

For a system with the hamiltonian

H = H + V
0

the perturbation expansions of the exact wave function 4n and the

exact energy E of the nth state may be writtenn

A. Dalgarno, "Quantum Theory" edited by D. R. Bates, (Academic Press,

New York, 1961), Vol. I, Chapter 5; A. Dalgarno, "Advances in Physics"
(Phil. Mag. Supplement) L1, 281 (1962); C. Schwartz, Annals of Phys.
2, 156, 170, and 176 (1959).

2 W. H. Young and N. H. March, Phys. Rev. 109J 1854 (1958).
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n * (0) +,(1) ÷.. (1)

- Z(o) +(1) M +Z(2) + .(3) +. (2)n n n n n

where #(o) and Z(°) are the nth normalized eigenfunction and eigen-n n

value (assumed non-degenerate) of the unperturbed hamiltonian H0

given by

(H - E(o). (o) . 0 (3)
0 n *n

The equation for the first-order wave function nM is
n

(H° - (o) )(1) + (V - EMl))(o) - 0 (4)
- n n n n

and therefore the first-order energy is given by

E(l) - (o) .(o)>
n n n

- v . (5)
n

The second- and third-order energies are given in terms of *(1n b

2 (2) 6 (1)'(V - V )*r(0)> (6)

1(3) < l')(V-Vn)*n()> _ 2,(2)<*(l),(o)> (7)

The expectation value of an operator L in the nth state of the

perturbed system may be expanded into different orders:

< L>n" <*nLn.> I /4nn>

- L(0)+L(1)+... , (8)
n n
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where

L(o) L <*(O)Lt(o)> (9)n nn n

L(-) 2 < *M((L - L )*(o) > (10)

It has been pointed out by Dalgarno that in cases where the complexity

of the perturbation V makes the first-order equation (4) too diffi-

cult to solve explicitly, it may nevertheless be possible to solve the

first-order equation

(H - Z(o) + (L- L)*(°) . 0 . (11)

The first-order correction (10) may then be written in the form

L(l) 2 n(V (o)> (12)n = V - Vn)*n > .(2

The integral in (12) is usually tractable even if V contains two-

electron terms (such as 1r12 ), so that the correction is obtainable

if (11) can be solved, which may be possible if L is a one-electron

operator. The mathematical problem is therefore to solve one-electron

first-order wave equations of the type (11).

Reductlon of the First-Order Wave Equation

The device used to simplify (11) is to put

n " nn ' (13)

where we have replaced *(o) by n for convenience, and to note that

(H° - ,(o))fnon - (Hof - fnHo)fn , (14)

so that (11) may be written
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CHo fn] ýn + (L - Ln))n - 0 , (15)

where the square brackets denote a commutator. This means that if, as

usual,

H - =%V2 + U (16)0 0

where the unperturbed potential energy U0  is a scalar, then (15)

becomes

[V2,f 1jý - 2(L - L ) .n (17)

If this equation is multiplied by fn , which we shall assume to be

real, it may be rearranged to give

V - (f 2Vf) 2f(L - Ln)f (18)

which is equivalent to the Wronskian form

V* .(Onxn - %n #n) - 2n(L - Ln)#n (19)

Since the usual boundary conditions are that 0 n and Xn vanish at

the boundaries, the boundary condition on f is that
n

#2Vf - 0 on boundaries (20)

Solution of the First-Order Wave Equation for One Dimension

For a one dimensional system described by a variable x confined

to the interval (a,b) , equation (18) becomes

d 2 df

x #n n) 4n L - fn(21)d ndx~ n nn
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This may be integrated directly to give

2, d . HM(x) (22)
Ondx n

where

M (x) - 2f (L - L (i)d (23)

and the constant of integration vanishes because of the boundary

condition (20).

The same treatment may be applied to a three dimensional system

described by spherical coordinates in which the operator L depends

only on r , and the unperturbed wave function is of the form

*n(r,e,p) - Rn(r)On(0, ?) . (24)

In this case fn depends only on r , and the equation (18) reduces to

d•r 2R2 n 2r2 R - Lnn , (25)
Tr' n r KnL n n

which is of the same form as (21) and may be integrated directly from

the lower limit r - 0 to give

r2R2df n.p()(6
r2 1 n dr Pn(r) (26)

where

Pn(r) - 21 2 Rn(s)(L-Ln)Rn(s)ds . (27)

(a) Ground state

For the ground state, say n - 0 , in which the unperturbed wave

function fo(X) does not possess any nodes between a and b , (22)

may be integrated immediately to give
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f (X) = fo(a) + [ M(l) , (28)

as pointed out by Young and March. It should be noticed that this

integration is not required explicitly if X0 = fo0o is to be used in

an integral such as (12). This is because

L(I)o = 2a fo0 o(V - Vo)oodx (29)

may be transformed by partial integration to give

L(-) f b df (30)o = - •x W()dx (0

0b )(x) dx , (31)

a

where

Wn(x) a 2 fx•n()V . (32)
a

In particular the second-order energy becomes

a

E(2) = C[Wo(x) o(x)j 2 dx (33)0

The only point requiring special discussion in the radial case

when I (r) has no nodes is the behaviour of f (r) at the lower

limit r - 0 . If Rn(0) 0 0 , then f n(0) is finite as long as
LR n (r) does not go to infinity faster than r-I at the origin.3Li () tan attheoriin. If

Sn(r)-= rt at the origin, then f n(0) is finite as long as LR n(r)

goes to zero as fast as r at the origin. The formula correspond-

ing to (31) in this case is

If£ Ln(r) goes to infinity even as fast as r 2  at the origin, no
serious difficulties are encountered. However, in this case fn(0)
might be infinite. For example, if Li (r) goes to infinity as r
at the origin, then f n(0) contains a Perm A ln(r).
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LPn(r) Qn (r)

-f 2 2 ' r(
0 r Rn(r)

where

%n(r) w 2 8 Rn()(V-Vn)S)ds . (35)

(b) Excited states

Consider the case in which the nth unperturbed eigenfunction

*n(x) - * (o) has n simple zeros at ala 2  in the intervaln .- ,ann (i)
(a,b). Then if the first-order wave function (n - *n is well-

behaved, the function fn (x) will have simple poles at al....,an

The direct integration of (22) to yield f presents difficultiesn

because MH (x) does not vanish in general at the zeros aj Similarly

the integral for L 1) corresponding to (31), namelyn

n *f (x) dx , (36)

a 2(x)

is infinite if On vanishes in the range (a,b)

To avoid the difficulties raised by the singularities in (22) and

(36), let us assume that ýn' fn ' Mn and Wn are analytic functions in

the vicinity of the real interval (a,b) . Then equation (22) may be

written

df n(z) Mn (z)n - n(37
dz 2

and integrated from a to x along any contour C which does not

pass through the zeros of #n :

) X (z)
f (x) - f (a) + n--dz .(38)n n fa*2(z)

n
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z-plane

a a3 b x-axis

Figure 1.

By Cauchy's theorem C may be any of the contours connecting a and

x shown in figure 1, since the integrand Mn/ f in (38) always has

double poled at the points al.-..,an , and these do not contribute any

residues to a contour enclosing them. The nature of the poles of

.. O/ follows from the simple character of the zeros of fn and the

definition of M by equation (23), according to which I(aH ) -0
n nj

and therefore in the vicinity of aj

Mn(Z) - Mn(aj) + O(z-aj) 2  . (39)

The same considerations apply to the integral expression for LM in
n

equation (36), and the correct form is

b M (z)W (z)
L n n dz (40)

fa *2(z)

where the path of integration C from a to b avoids the double

poles at alV...,an

The radial case can be dealt with in the same way, and leads to

the formula

LM Pn(z)Qn(z) dz (41)
0 z R n(z)
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It follows that when the integrations in (40) or (41) -m be per-

formed analytically it is unnecessary to consider the singularities

explicitly, since formally it makes no differeme whether one integrates

along a contour with complex variable z or along the real axis with

variable x . To clarify the method and to illustrate the power of the

integral formulae for excited states, it is useful to treat a simple

example, for which we choose the polarizability of a particle in a one-

dimensional box.

(c) Example

Consider a charged particle of unit mass whose position is described

by x and is free to move in the interval (0,A) . The eigenfunctions

and energies are

sin(nx) , n(o) -n 2  (n - 1,2,...) . (42)ýn~x) Ix ni~x .1•

Now suppose a perturbation V m x - o/2 is applied, corresponding to

the energy of the particle in an electric field. The polarizability

is -2E(2) where K (2) is the second-order energy of the nth eigen-
n n

state given by an integral similar to (40), namely

(a2n ) " Wn()/n(z 2 dz (43)n n ~/rZJ
0

where the contour C from 0 to A avoids the singularities of the

integrand at kn/n (k1l,2,..-,n-l) . The function Wn (z) is given by

sin(2nz) + sn 2 (44)W (Z) = !Z(Z-z-) - (Z- + 44

When this expression is substituted into (43) and the integration

performed analytically ignoring the singularities, we obtain finally

1 (2) 1 15 2 (45)
24n n

This agrees with the result obtained after much algebraic labour by
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summing the usual spectral formula

SV 2

1(2) Vk (46)n I Z(o) (0)k=1 n "

(On)

Note that it follows from (46) that

n- i(2) . 0 (47)n
n-l

which can be used to check equation (45).

Removal of Sinaularities

When the integration is to be carried out numerically by a

quadrature designed for integration along the real axis, it is necessary

to devise ways of removing the singularities. There are two simple

and apparently different ways of doing this, which are however related

to each other.

(a) Removal of singularities by subtraction

The function f defined by (13) has n simple poles at alJ. ann

which may be revealed explicitly by defining a new function gn(x) by

n

fn = gn X-a (

J-l j

and choosing the c so that gn is analytic at the points a. By

substituting (48) into the differential equation (22) we get

dgn Hn(X) n c|
dx •2( J (X a)2 (49)

d n 4(x) J1(x-a )2

The coefficients cl,*..,cnn must therefore by chosen to remove the

singularities of M n 1ý ; that is
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cj M n (a )/t (a) 2  (J-1,2,..,n) . (50)

Equation (49) may now be integrated along the real x-axis to give

rxrH<(" <A+(l) -j (51)
gn(x) - gn(a) + J.L 2 n Jd (1

where
n

nAn(X J- (-8(X) (52)J'l (x'aj)2

Similarly equation (40) may be written as an integral along the real

axis

(n b n -nfn b 0 n(V-Vn)0 n
L - f j 2A dx - n a aj) dx (53)

a) j -nOn J =1

In the radial case equation (48) is still valid with the coeffi-

cients given by

C - Pn(a )/[LjR'(aj)]2 (54)

The equation corresponding to (41) then becomes

ZC r Rt (V-V )R
L(1) Qn dr c! n dr , (55)n fn [ 2 2ld (r-aj0 n JIm fo

where
n

rn(r) - r 2R2 Z c , (56)
J-l (r-aj )2

(b) Removal of singularities by lower states

An alternative method is to make use of the n eigenfunctions

0o9.", " n-l_ for the lower states of the unperturbed system. In place

of (13) we write the first-order wave function in the form
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n-I

Xn " gn9.n, Z bk k (57)

k-0

where the coefficients b ,...1-,b are constants to be chosen so that

Sis analytic at al,...,an . By substituting (57) for •n into (11)

and proceeding as before we get in place of (21)
dg n-l

•x0 -) 24n(L - Ln)0n 2Z bk(Ek -Bn0 k ,(58)

k-0

which on integration gives

On - M n(x) -2 bk(zk-9n) f nok d . (59)

k-0 a

The second integral may be evaluated immediately by means of the

unperturbed Schrldinger equations satisfied by *k and On , namely

d2 0k

dx 2 -+ 2(1k - UO)Ok - 0 ,

(60)
d2 On + 2(1- U)

dx2

By multiplying by On and Ok respectively and subtracting we get

d•() dfn do,.

dA - "ndx d-dx- 2 (xk - Xn) fkfn (61)

and hence by integration

On- nk --n) kn d . (62)

When (62) is substituted into (59) the latter becomes

dg n-1

2- a. (63)
On H- Zbk(Okon - )n)k)

k-0
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The n coefficients bk have now to be chosen so that the two terms

on the right hand side cancel to the first-order in (x-aj) at the

points ai . This can be achieved if the bk satisfy the n linear

simultaneous equations

n-i

bkAk(aj) = Mn(aj)/*n(aj) (j - l,-..,n) (64)

k-O

It follows directly from (61) that the derivative of the right hand

side vanishes automatically at the points aj , so that (63) may be

integrated along the real axis to give

gn(X) gn(a) + fx n(f) an(l) 3• d (65)

where

n-1

an bk(Ok'n - nk)(66)
k-O

The corresponding formula for LM is then

n

b M n-l
L -nfbVnL 2 dx Z- bkV% , (67)

a n k-0

where

Vkn = - fb ndx (68)

This form would not be of interest unless it was possible to solve

(64) explicitly for the bk in a large class of cases. The class is

that in which the unperturbed functions Ok form the basis for a

Gauss-type quadrature formula with weight factor 2(x) . In this

case quadrature weights A may be found so that

eb 2 n (69)00 (x)p(x)dx YZ 0ai pa(9
exactly for all polynomials p(x) up to degree 2n-1 . The A are
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given by

Aj - l '(aj] -
(70)

or alternative formulae4. Applying equation (69) to p - *k~n'•, we

get

z Aj4 k(aj)Oj(aj) - •ki (k,1 0,l,'..,n-l) o (71)

J-1

Therefore by multiplying (64) by Aj~k(aj) and summing over j we get

the explicit form

n

bk Z Aj4k(aj)Mn(aj)/•n(aj) . (72)

j-1

The class of functions fk to which this treatment applies is that in

which *k is equal to *o times a polynomial of degree k in x (or,

more generally, in a transformed variable). Thus it includes the

Hermite functions for the simple harmonic oscillator but excludes the

Laguerre function solutions of the hydrogen atom.

It will now be shown that in the cases in which this method can

be applied it is equivalent to the direct subtraction of the singular-

ities. Consider the expansion of the function On(x)/(x-a4) in terms

of the complete set of unperturbed functions *k " For the class under

consideration only the n lowest functions ýo... 4n-1 are involved

so that

n-1

Zn(X)/(x-a = Z Bk~k(x) # (73)

k-0

where the Bk are given by

Bk J x-ab ndx (74)

Z. Kopal, "Numerical Analysis" (Chapman and Hall, London, 1955).
chapter 7.
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Now the quadrature formula (69) is exact in this case so that

I

Bk - Aj~k(aj)*n(aj) 1 (75)

and therefore

n(x) ' n- (76)x _aj A (aj) Z k(aj)Ok(X)k=0

Hence from (48) and (50) we have

n

fngn -Xn - nZ xCjJlx-aj

n n-i
"Z cjA7*(aj) 2. k(aj)4k(x)

j-1 k-O

n-1

Y bk1ýk(x) ,(77)

k-0

where

n.
b k cjAJn(aj)On k(aj)

J-1

n

= z AjIM n (aj) k (aJ)/ l'(aj)
J-1

= bk (78)

by equations (40) and (72). Thus (77) is the same as (57), which

proves that in the restricted class of cases under consideration, the

two methods are identical; the same arguments apply to the radial

equation. While the second method is theoretically interesting in
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suggesting that quadrature formulae may be useful in perturbation

theory, the first method is quite general and is naturally to be

preferred in numerical applications.
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